
JOURNAL OF COMPUTATIONAL PHYSICS 20, 50-63 (1976) 

A Comparison of Two Monte Carlo Methods for 

Computations in Statistical Mechanics 

G. W. CUNNINGHAM 

Federal Systems Division, IBM, Gaithersburg, Maryland 20760 

AND 

P. H. E. MEIJER 

Catholic University of America, Washington, D.C. 20017 
and National Bureau of Standards, Washington, D.C. 20234 

Received September 4, 1974; revised June 30, 1975 

A comparison of two Monte Carlo methods for computations in statistical mechanics 
is presented. In the comparison, involving a two-state problem, the transition probabilities 
introduced by Metropolis et al. are compared with the conditional probabilities of the 
Boltzmann distribution. The analytic relationship between the two is derived. Results 
of energy computations are given for an Ising spin system on a triangular lattice using 
first one set of transition probabilities, then the other. Both results are compared with 
the exact analytic solution. We found greater stability and faster convergence using the 
conditional Boltzmann probabilities. Also, some results for the Monte Carlo method in 
general are presented. 

1. INTRODUCTION 

Since its introduction in 1953 as a method for investigating the behavior of a 
liquid or a dense gas represented by interacting molecules confined to a box, the 
Monte Carlo method of Metropolis et al. [l] has been used widely and has had 
extensive description in the literature [2-51. It has both Markovian and importance- 
sampling characteristics. It is Markovian in that the sequence of sample points are 
chained together by having the selection of each successive sample point depend 
only on the previous sample point. It is importance-sampling in that the criteria 
for sample selection are based on the known probability distribution of the function 
that is to be either integrated or summed. (The criteria for sample selection are 
equivalently referred to as transition probabilities since a system state is associated 
with each sample point.) 

50 
Copyright 0 1976 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



COMPARISON OF MONTE CARLO METHODS 51 

In the comparison presented here, the transition probabilities used by 
Metropolis et al. are compared with the conditional probabilities, suggested by 
Wood [5] and first used by Flinn and McManus [6], of the known distribution, 
which in this case [l], is the Boltzmann distribution. The analytic relationship 
between these two sets of transition probabilities is derived. 

As an example of a two-state problem having interest in the literature [7-91, 
the results for energy computations are given for an Ising spin system [lo] on a 
triangular lattice using first one set of transition probabilities, then the other. 
Both results are compared with the exact analytic solution [ll, 121. We found 
greater stability and faster convergence using the conditional Boltzmann proba- 
bilities. To gain some measure of the stability of each computation, since it is 
numerical, we employed techniques for monitoring and evaluating its convergence. 
Order calculations of general interest to the Monte Carlo method are also given. 

2. FRAMEWORK FOR DEVELOPMENT 

To establish a framework in which to develop the revised Monte Carlo method, 
a description of the specific application used in this study is given. Let us consider 
a system of magnetic moments on a two-dimensional triangular lattice. The 
magnetic moments are referred to as spins. Each lattice point is occupied by a spin 
and is surrounded by six nearest-neighbor sites. Neighbors beyond the nearest are 
considered to have no interaction with the center spin. Each lattice site, denoted by 
the subscript i, is assigned a spin variable & . This vaiarble can have one of two 
possible values: + 1, representing some reference orientation in space, usually 
taken as up; and -1, representing the opposite, or down orientation. In this, the 
Ising model, we do not consider the quantum mechanical option of a mixed state 
which is partially up or partially down. In general, each spin could interact with an 
external magnetic field. The case studied here is for an isotropic lattice with zero 
external field. Then, for a given configuration on a lattice of N spins, the total 
internal energy is defined as 

where J is the interaction energy between any two spins. 
The lattice is called ferromagnetic when J > 0, due to a uniform tendency for 

nearest-neighbor spins to be parallel. When J < 0, the lattice is called antiferro- 
magnetic due to a uniform tendency for nearest-neighbor spins to be antiparallel. 
Both tendencies follow from the physical principal that systems tend towards 
minimum energy, in conjuction with the definition of energy in (1). 
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Since a physical measurement involves macroscopic quantities, and the internal 
energy in (1) is, by definition, microscopic, an average of (1) is required. The one 
used in this study is based on the canonical ensemble [9]. According to the for- 
malism of statistical mechanics, the expectation value of any function F of the 
ensemble parameters is given for the canonical ensemble by 

(2) 

where k is Boltzmann’s constant and T is the absolute temperature. The subscript p 
denotes a specific member of the ensemble, and E, and F, are the energy and the 
value of F for that member. A member of the ensemble corresponds to a configu- 
ration or state of the system. 

Since the Monte Carlo method is numerical, we are restricted to a finite value of 
iV. Thus, the lattice has boundaries. The quantities to be computed are intensive 
(i.e., we will actually compute the energy and the order per spin). Thus, they are 
not supposed to be influenced by boundary effects. Thereore, we impose periodic 
boundary conditions on the lattice to minimize these effects. 

We will now describe the Monte Carlo method used by Metropolis et al. for the 
evaluation of (2) 

3. THE MONTE CARLO METHOD 

Because of the astronomical value of the upper limit of the summation in (1) 
for a lattice of any significant size, the direct computation of (2) is impractical 
even on the fastest computers. In a simple Monte Carlo approach, we would 
attempt to approximate (2) by selecting at random a sample of the 2N possible 
configurations of the lattice, computing F, for each configuration and weighting 
it with e-EpIkT in forming the numerator. The denominator would be formed in the 
same process with unity replacing F,, . The chances of attaining a representative 
sample of the ensemble in this manner are very small due to the large size of the 
ensemble. A technique that can form a relatively small but representative sample 
of the ensemble is needed. 

From the form of (2) it can be seen that each point is weighted by the normalized 
Boltzmann probability density distribution: 

P 
p, = e-SlkT 

Ix 
e-Evik’ (3) 

"=l 

As can be seen, the ensemble is strongly weighted in the direction of the ground 
state where P, is a maximum (since E,, < 0). If we could somehow steer our Monte 
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Carlo sampling process in the direction of these more important points, we would 
attain a better estimate of(F). This is called in statistics the method of “importance 
sampling.” 

The Monte Carlo method for attaining an estimate of(F) based on the foregoing 
considerations will now be given. It was introduced by Metropolis et al. [I] to 
make equation of state calculations on substances with models similar to that used 
here for the triangular magnetic lattice. This method has been described extensively 
in the literature [2-51. We will simply give the probabilities used by Metropolis 
et al. [l] for transition from any point p in the ensemble to any point E, and then 
describe their application in the Monte Carlo method. 
The probabilities are: 

P,, = 0 for E not one spin reversal removed from EL. 
=l for AE < 0 (4) 
= e-AE/lcT for AE > 0 

where AE = (E, - E,). 
The application of (4) is as follows. We pass through the lattice reversing spins. 

At each step we compute AE and generate a random number n between 0 and 1. 
Then, if n < plre , we make the transition from configuration p to configuration E 
(i.e., leave the spin reversed), and compute F, and add it to a running sum of F. 
If n > P&L6 , we stay in configuration p (i.e., put the spin back the way it was), and 
compute F, and add it to the running sum of F. (Actually, F, was already computed 
from the previous step.) We continue making passes through the lattice until, say, 
R points have been sampled. Then our estimate of (2) is 

(5) 

It has been shown (e.g., [16]) that (5) is exact in the limit as R + co for transition 
probabilities (4). Convergence considerations will be made in a later section. 

In the next section we describe a method that is different from the above only 
in the transition probabilities, P,, , which have been shown (e.g., [3]) to be not 
unique. 

4. THE REVISED MONTE CARLO METHOD 

We argue that, as before, what we need as we go from one point in the ensemble 
to the next (by reversing spins) is a transition probability at each point that is 
derived from the Boltzmann distribution, i.e., we want to make transitions from 
one point in the ensemble to another according to the Boltzmann distribution. For 
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the desired transition probabilities we now take the two-point conditional 
probabilities [14] (suggested by Wood [5] and first used by Flinn and McManus [6]) 
given by 

pa = PAP, + PC) (6) 

where, as in (4), PuE is the probability of a transition from point p in the ensemble 
to point E, and where P, and P, are the unconditional normalized Boltzmann 
probabilities at points p and E given by (3). Combining (6) with (3) and adding the 
condition for reversing one spin only, we get 

Put = 0 for E not one spin reversal removed from p. 

= l/(1 + edE’kT) (7) 

where AE = (E, - E,). 
The proof that the transition probabilities given by (7) result in expression (5), 

including its exact form in the limit of large N, follows that of Ref. [16], which 
considers the transition probabilities of Metropolis er al. given by (4). To avoid 
a lengthy repetition, here we will give only those parts of the proof that are different 
due to the differences between (4) and (7). A familairity with the material of 
Ref. [16] is assumed. 

The transition matrix, P (for one pass through the lattice), with 2N x 2N 
elements, ppc , must be stochastic. That is, puE 3 0 and C,p,, = 1 must hold. 
This is clearly the case for (7), the first condition being satisfied by inspection, 
and the second by the fact that the application of (7) is the same as for (4). That is, 

P PM = 1 -PM, and these are the only nonzero elements in row ~1 of P. 
The transition matrix P must result in a homogeneous Markov chain. That is, 

pit. must be independent of the sequence of steps in the Markov chain. Again this 
is the case for (7) since, as with (4), only the energy difference between two 
successive states is involved. 

Proof that the Markov chain resulting from (7) is irreducible (all states are of 
the same ergodic class) is the same as in Ref. [16] for (4)except that it is not possible 
when using (7) for puu = 0, as it is when using (4) 

Proof of the aperiodicity of the Markov chain resulting from (7) is also the same 
as that given in [16] for (4), except that at least one diagonal element of P is seen 
to be nonzero without recourse to the configuration of minimum energy. 

Finally, we must show that for P defined by (7) the probability distribution on 
step n + 1 of the Markov chain, given by 

jfi,+1 = $u, (8) 

approaches the Boltzmann distribution (3) as n becomes infinitely large; that is 

& Al = # 
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where # is given by (3). Because of the uniqueness of this limit [16], it suffices to 
show that a vector with components given by (3) is an eigenvector of P with 
eigenvalue unity. This can be done by demonstrating that # is an eigenvector with 
eigenvalue unity of P(k) for all k, where P(k) is the 2N dimensional square stochastic 
matrix of transition probabilities corresponding to the reversal of the spin on site k. 
That is, we need only show that 

Wk) = # (9) 

where # is the Boltzman distribution. It follows that this will hold for the product 

As previously defined, P = J& P(k) is the transition matrix for one pass through 
a lattice of N sites. Rewriting (9) in element form, 

We must show that for p,,(k) given by (7) and & given by the Boltzmann distri- 
bution (3), & is also equal to (3). On any spin reversal, at most two states are 
involved, say p and E, with the following four possible transitions: 

p + E, CL -+ PP E + p, E 4 E. WI 

Thus, P(k) has only four nonzero elements. We have 

P uE = l/(1 + e(Ec-EJ’kr), pLIu = 1 - puE (13) 
and 

PEP = l/(1 + P+~)‘kT), PCE = 1 - PEU . (14) 

Computing & , letting D-l = CF=“, e-EtlkT, we have 

& = De-Eu’kT[l/(l + e(E&‘“=)] + De-Ed”=[l _ l/(1 + e(Eu-%)Ik=)]. 

Reducing the expression, we get 

,#< = De-E&= (15) 

and we have the Boltzmann distribution. The procedure is similar for the other 
component of *. 

In conjunction with Ref. [16], this completes the proof of the validity of (5), 
including its exact form, for the transition probabilities (7). 
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The transition probabilities derived here (7) can be related to those used by 
Metropolis et al. [l] by expanding (7) in a power series: For AE ( 0 

P LLE = 1 _ e--/AElkT + e-ZlAEl/kT - + ..,‘ (16) 
For AE > 0 

P llE = e-AE/kT _ e--BAElkT + _ . . . . 
(17) 

Dropping all terms but the first in each series, we have (4). 
At first sight, (4) might seem to be a poor approximation to (7). However, the 

most important characteristic of any satisfactory approximation to (7) is that it 
has the same relative strength of transition about AE = 0. This is the case, as is 
found by taking the ratio of (16) to (17) and comparing it to the ratio of (7) for 
AE < 0, to (7) for AE > 0. These ratios are both equal to eAE/lzT. 

A plot of both sets of probabilities is shown in Fig. 1. Note that for AE = 0 
(i.e., three surrounding spins up and three down), we keep changing the lattice 
with a 50% chance using the conditional probabilities (7), rather than always 
accepting the modification, as would result from using the conventional method (4). 
This is consistent with the use of transition probabilities in relation to the 
Boltzmann distribution because two states of equal energy have equal probability 
of occurrence. 

The preceding is a special case of the general statement that the conventional 
method has a greater strength of transition, i.e., 

j- ~(4) &W > j-p(7) WE). (18) 

This results in more movement of the lattice through phase space. If the initial 
configuration of the lattice is far removed from the mean configuration, this 
could tend to improve results. Unfortunately, for the cases of greater interest 
(no analytic exact solution), we usually do not know the relationship between the 
initial and the mean configurations. 

r---r---- I , I I I 
-8 -4 0 4 8 12 16 

AE/J 

FIG. 1. PIots of conventional transition probabilities (a) and Boltzmann conditional propabil- 
ities (b) for kTJ = 4°K. P is the probability that a given change is accepted. 
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5. CALCULATIONS 

In the calculations, the selection of each subsequent spin for reversal and the 
definition of an iteration were both based on the method of Ehrman et al. 13, 151. 
Starting at spin (1, l), each spin in the first row was selected in turn, then each spin 
in the second row, and so on until each spin in the entire lattice had been considered. 
This defined one iteration. Then, spin (1, 1) was selected again, starting the second 
iteration, and so on. The expectation value per spin of the energy, of the long-range 
order, and of the short-range order, were computed in the manner indicated by (5). 
For a lattice of N spins, y nearest-neighbors, and with A4 iterations, the equations 
used in the calculations of energy and long-range order are given below. 

Energy: 

C-Q 
-=&$+ JN (19) 

where R = NM, the number of samples taken from the ensemble. 
Long-range order per spin: 

CL) = & 5 L, 9 
LL=l 

(20) 

where L, is the long-range order of the system in the @h state. The short-range 
order per spin calculated [3] is the fraction of nearest-neighbor sites that are 
occupied by an antiparallel pair of spins. 

(21) 

where 

In terms of {E), 

(f> =+g) +;. 

Once expression (19) was computed, (f) was evaluated from Eq. (23). 
To verify these Monte Carlo calculations, the energy results were compared with 

the exact Onsager solution [17] as performed by Wannier [l l] and Houtappel [12]. 
(Initial comparison with [12] showed discrepancies. After two typographical errors 
were found in the formulation and confirmed by Houtappel in private commu- 
nication, the comparison became very good [18].) The percentage deviations of 
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the Monte Carlo results from the exact values are tabulated in Table I. The signs 
of the deviations were found to be random. 

TABLE I 

Comparison of Monte Carlo Energy Calculations with Exact Values for the Two-Dimensional 
Triangular Isotropic Lattice 

Exact Percentage deviation from exact 

Lattice size 20 x 20 10 x 10 20 x 20 20 x 20 30 x 30 
Number of 
iterations 500 8,ooO 2,000 8,000 8,ooO 

Total number 
WI J I of spin flips 200,000 800,000 800,000 3,200,OOO 7,200,000 

Ferromagnetic using transition probabilities (7) 

1 -2.99992 0.40 0.02 0.10 0.003 
2 -2.96748 0.65 0.03 0.15 0.05 
3 -2.68033 1.11 0.07 0.26 0.04 
4 -1.51468 1.92 2.12 0.36 1.17 
5 -0.98955 0.05 0.35 0.20 0.45 
6 -0.74284 1.00 0.13 0.64 0.001 
7 -0.59548 0.21 0.32 0.82 0.47 
8 -0.49705 0.82 0.37 0.79 0.25 
9 -0.42656 1.25 0.01 0.20 0.37 
10 -0.37359 1.25 1.27 0.49 0.30 

Average percentage deviation 0.87 0.47 0.41 0.31 

Antiferromagnetic using transition probabilities (4) 

1 -0.931143 0.29 0.39 0.04 0.05 
2 -0.730472 0.28 0.22 0.10 0.01 
3 -0.590302 0.64 0.01 0.51 0.05 
4 -0.494415 0.01 0.19 0.60 0.34 
5 -0.425084 0.21 1.50 0.41 0.25 
6 -0.372688 0.15 0.32 0.74 0.33 
7 -0.331731 0.45 0.23 0.63 0.17 
8 -0.298843 0.28 0.09 1.51 0.19 
9 -0.271873 4.30 1.44 1.80 1.43 
10 -0.249349 3.60 0.70 2.53 0.80 

Average percentage deviation 1.00 0.51 0.90 0.37 

0.052 
0.059 
0.174 
0.344 
0.015 
0.027 
0.107 
0.044 
0.128 
0.019 
0.096 

0.087 
0.009 
0.014 
0.077 
0.136 
0.142 
0.116 
0.177 
0.375 
0.452 
0.158 

Comparison between analytic results and Monte Carlo calculations of the 
short-range order is implicit in the comparison of the energy values, as is evident 
from (23). An exact solution for the long-range order has not yet heen obtained, 
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since the energy as a function of the field strength is not known. However, its 
general behavior is indicated by the presence (ferromagnetic lattice) or absence 
(antiferromagnetic lattice) of a phase transition, for zero field strength. Fig. 2 is 

FIG. 2. Long- and short-range order for the ferromagnetic and antiferromagnetic lattices; 
Done with 30 x 30 lattice and 8000 iterations, and using Boltzmann conditional probabilities. 

a graph of long- and short-range order versus kT/J, displaying both the ferro- 
magnetic and antiferromagnetic lattices. These calculations were made using only 
the Boltzmann conditional probabilities (7) and are of general interest to the 
Monte Carlo method rather than for comparison of (7) with (4). 

6. DISCUSSION OF RESULTS 

A. Comparison of Transition Probabilities 

As indicated in Table I, the ferromagnetic calculations were made using the 
transition probabilities given by (7), and the antiferromagnetic calculations were 
made using the transition probabilities of Metropolis et al. [l] given by (4). A 
direct comparison of the two sets of transition probabilities for this two-state 
problem is given in Table II. It can be seen from Table I that the conditional 
Boltzmann probabilities produce more consistent results, particularly when it is 
noticed that the ferromagnetic lattice has a critical point at kT/J = 3.641, in the 
neighborhood of which the energy undergoes large fluctuations. As can be seen 
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TABLE II 

Direct Comparison of Transition Probabilities (in Terms of the Percentage Deviation from the 
Exact; in Same General Format as Table I) 

Ferromagnetic 

WI J I 

20 x 20 10 x 10 20 x 20 
500 8,ooo ~,ooo 

200,000 800,000 800,OQO 

(4) (7) (4) (7) (4) (7) 

1 0.36 0.40 0.07 0.02 0.09 0.10 
2 0.55 0.65 0.01 0.03 0.76 0.15 
3 1.12 1.11 0.23 0.07 0.33 0.26 
4 2.24 1.92 7.23 2.12 1.60 0.36 
5 0.17 0.05 0.77 0.35 0.62 0.20 
6 1.30 1 .oo 0.60 0.13 0.24 0.64 
7 0.56 0.21 0.74 0.32 0.91 0.82 
8 0.78 0.82 0.30 0.37 0.88 0.79 
9 0.32 1.25 0.60 0.01 0.51 0.20 

10 1.27 1.25 0.22 1.27 0.02 0.49 

Average 0.90 0.87 1.07 0.47 0.60 0.41 

Antiferromagnetic 

20 x 20 20 x 20 30 x 30 
2,ooo 8,000 8W’ 

800,000 3,200,OOO 7,200,000 

(4) (7) (4) (7) (4) (7) 

1 0.04 0.01 0.05 0.04 0.016 0.052 
2 0.10 0.05 0.10 0.03 0.046 0.059 
3 0.51 0.18 0.05 0.08 0.135 0.174 
4 0.60 0.31 0.34 0.02 0.313 0.344 
5 0.41 0.01 0.25 0.20 0.220 0.015 
6 0.74 0.23 0.33 0.01 0.190 0.027 
7 0.63 0.45 0.17 0.41 0.208 0.107 
8 1.58 0.21 0.19 0.36 0.095 0.044 
9 1.80 0.31 1.43 0.11 0.145 0.128 

10 2.53 0.23 0.80 0.39 0.193 0.019 

Average 0.90 0.20 0.37 0.16 0.156 0.097 
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in Table II, the conditional Boltzmann probabilities yield noticeably better results, 
including the important characteristic of greater regularity in response to changes 
in process parameters, such as lattice size and the total number of spin reversals. 
As mentioned, this characteristic is also evident in Table I. The greater strength 
of transition, inherent in (4) as pointed out earlier, was experienced in the com- 
parison. Typically, (4) resulted in the acceptance of 20 to 40 % more spin reversals 
than did (7). 

B. General Monte Carlo Considerations 

General estimates of the influence of lattice size, the number of iterations, and 
the total number of spin reversals on the accuracy can be inferred from Table I. 
For example, for the ferromagnetic case, increasing the number of iterations 
significantly (by a factor of 4) for a 20 x 20 lattice, does not appreciably increase 
the accuracy. Increasing the lattice size to 30 x 30 and holding the number of 
iterations constant (which results in an increase of the total number of spin reversals 
by a factor of 9/4), produces a significant increase in accuracy (by a factor greater 
than 3). The maximum percentage deviation also must be considered in any such 
estimates. In this example, it was significantly reduced (from greater than 1 % to 
less than 0.4 %). 

No attempt was made to assign an absolute uncertainty to the results of the 
calculations because no such measure of accuracy can be given for any finite 
Monte Carlo process when applied to an unknown distribution, as is the case 
here. In a manner similar in principle to that used by Salsburg et al. [7], we 
compute the standard deviations of the running averages of the energy over 
successively longer portions of the Markov chain. For W estimates of (E), we 
computed 

where 

(a!?) = ;c (E)i. (25) 

(24) 

In the energy calculations, the average of the expectation values and the corre- 
sponding standard deviations were computed from Eqs. (25) and (24) over the 
entire sample, over the last 90% of the sample, over the last SO’%, 70x, etc., to 
over the last 10 ‘A of the sample. Also, the value of (E)R, was printed out for 

Rj = jR/100 j = 1, 2 )..., 100, 

where R is the total number of steps in the Markov chain. 

(26) 
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90 80 70 60 50 40 30 20 10 
L P 

FIG. 3. Fluctuations in (E) for a ferromagnetic 30 x 30 (/CT/J = 8; 8000 iterations). L. P. 
is the last percentage of the sample over which gW was computed. 

The CJ~ values were helpful in establishing a convergent pattern, as shown in 
Fig. 3, which gives a typical set of u W values. In the ferromagnetic case near the 
critical point, the oW values are larger by an order of magnitude, but still reflect 
the same convergent pattern. 

The effect of the initial configuration of the lattice was also investigated in terms 
of random versus ordered. It was found that a configuration that had an energy 
closer to the exact value of (E) produced better results. For example, an ordered 
initial configuration gave better results by factors of from 1.5 to 4 for the ferro- 
magnetic lattice, and worse by the same factors for the antiferromagnetic lattice. 
For a random initial configuration, the previous results weer reversed with respect 
to ferromagnetic and antiferromagnetic systems. 

Finally, the results of the order calculations presented in Fig. 2 show the 
expected [I 1, 121 transition from the disordered to the ordered state for the 
ferromagnetic lattice as the temperature decreases through the critical value. An 
inflection in the short-range order is clearly distinguishable at the critical point. 
One can expect this from the fact that (E) has such an inflection (using Eq. (23)). 
Also, the slope of <f) shows the I/y factor of Eq. (23) with y = 6, i.e., d(f)/dT = 
(l/y) d((E)/JN)/dT. This flattening effect of the I/y factor tends to make the 
infinite slope at the critical point less obvious. The results for the antiferromagnetic 
lattice are also as expected [ 11, 121. They do not show a critical point, as is evident 
from the fact that the long-range order is near zero everywhere, and that the 
short-range order does not have an infinite slope. The magnitude of (L) is of the 
order of 1O-6, which is remarkably good for this type of numerical calculation, 
since a 30 x 30 lattice in the $h configuration and only one spin reversal removed 
from zero microscopic long-range order yields L, s 10-3. 
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